Acid whey as growth medium for probiotic and lactic acid bacteria

Diana Paveljšek¹, Jernej Oberčkal¹, Tjaša Žohar¹, Neja Pristovšek¹ Timeja Planinšek Parfant², Nika Osel², Robert Roškar², Marko Kete³, Maja Zupančič Justin³, Bojana Bogovič Matijašić¹

¹University of Ljubljana, Biotechnical faculty, Slovenia; ²University of Ljubljana, Faculty of Pharmacy, Slovenia, ³Arhel Ltd, Ljubljana, Slov

Introduction

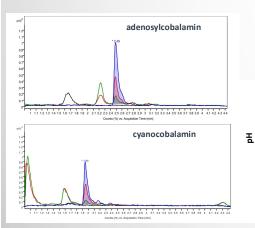
Acid whey, a nutritious by-product of the fresh curd cheese production, represents a technological challenge for further processing in the dairy industry because of its high lactic acid content and bacterial load. Therefore, acid whey is often discarded as a **biological waste**.

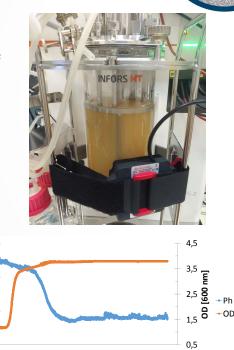
Objectives

We further used acid whey enriched with yeast extract as a growth medium for various probiotic bacteria and lactic acid bacteria, and for the production of various metabolites such as bacteriocin nisin and vitamin B12.

Methods

Selected bacterial isolates were inoculated into yeast extract-enriched, neutralized and microfiltrated acid whey. The experiments were initially conducted on a small laboratory scale and later scaled up to 1-2.5 L in benchtop bioreactors. During fermentation we monitored pH, optical density and also antimicrobial activity in nisin production and production yield of B12.


Conclusions


We confirmed that acid whey is a suitable growth medium for probiotic and lactic acid bacteria and for the production of nisin and B12, showing a new way of utilization that could contribute to the reduction of waste from the dairy industry.

Results

All strains used were able to grow in acid whey enriched with yeast extract and their yield was higher when **pH was not regulated** during the fermentation process. Acid whey-based media were also suitable for the production of nisin with Lactococcus lactis IM145 and vitamin B12 with Bacteriocin activity was highest after 6 to 8 h. Nisin was further semipurified by RP, HIC or cation-exchange chromatography. Using Propionibacterium fermentation in enriched acid whey, we obtained two forms of B12, adenosylcobalamin and cyanocobalamin after 4 days.

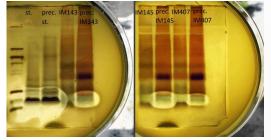
100

150

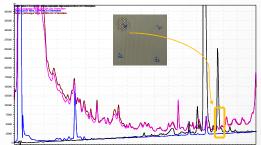
FOR ACID WHEY

7

6


50

time [h]


REFERENCES

Bhunia, A. K. & Johnson, M. G. A modified method to directly detect in SDS-PAGE the bacteriocin of Pediococcus acidilactici. Lett. Appl. Microbiol. 15,

Bhuna, A. K. & Johnson, M. G. A informed includes to description of the state of

Antimicrobial activity and SDS-PAGE electrophoresis - detection of nisin before and after precipitation. Nisin was obtained by fermentation of yeast extract-enriched acid whey with strains Lc. lactis IM143, Lc. lactis IM145, Lc. lactis IM407. St. - standard, prec. - precipitation.

RP-HPLC detection of nisin, produced with strain Lc. lactis IM145 after 8 h in 2.5 L bioreactor.

ACKNOWLEDGEMENTS

This research was supported by LIFE16 ENV/SI/000335 LIFE for Acid Whey.